
Article

Chromosome Mis-segregation Generates Cell-

Cycle-Arrested Cells with Complex Karyotypes that
Are Eliminated by the Immune System
Graphical Abstract
Highlights
d p53 activation is a potential, but not obligatory, outcome of

chromosome mis-segregation

d Chromosome segregation errors lead to replication stress

and DNA damage

d Aneuploidy drives genome instability and evolution of

complex karyotypes

d Aneuploid cells with complex karyotypes are cleared by

natural killer cells
Santaguida et al., 2017, Developmental Cell 41, 638–651
June 19, 2017 ª 2017 Elsevier Inc.
http://dx.doi.org/10.1016/j.devcel.2017.05.022
Authors

Stefano Santaguida,

Amelia Richardson,

Divya Ramalingam Iyer, ...,

Nicholas Rhind, Arshad Desai,

Angelika Amon

Correspondence
ste@mit.edu (S.S.),
angelika@mit.edu (A.A.)

In Brief

By examining the immediate

consequences of chromosome mis-

segregation, Santaguida et al. show that

aneuploidy causes genomic instability

and the evolution of cells with complex

karyotypes. Such cells undergo

senescence and produce pro-

inflammatory cytokines that promote

their clearance by natural killer cells.

mailto:ste@mit.�edu
mailto:angelika@mit.�edu
http://dx.doi.org/10.1016/j.devcel.2017.05.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.devcel.2017.05.022&domain=pdf


Developmental Cell

Article
Chromosome Mis-segregation Generates
Cell-Cycle-Arrested Cells with Complex Karyotypes
that Are Eliminated by the Immune System
Stefano Santaguida,1,* Amelia Richardson,2 Divya Ramalingam Iyer,3 Ons M’Saad,1 Lauren Zasadil,1 Kristin A. Knouse,1,4

Yao Liang Wong,2,5 Nicholas Rhind,3 Arshad Desai,2 and Angelika Amon1,6,*
1Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of

Technology, 76-543, Cambridge, MA 02138, USA
2Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla,

CA 92093, USA
3Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester,

MA 01605, USA
4Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
5Present address: Calico Life Sciences LLC, South San Francisco, CA 94080, USA
6Lead Contact

*Correspondence: ste@mit.edu (S.S.), angelika@mit.edu (A.A.)
http://dx.doi.org/10.1016/j.devcel.2017.05.022
SUMMARY

Aneuploidy, a state of karyotype imbalance, is a
hallmark of cancer. Changes in chromosome copy
number have been proposed to drive disease by
modulating the dosage of cancer driver genes and
by promoting cancer genome evolution. Given the
potential of cells with abnormal karyotypes to
become cancerous, do pathways that limit the
prevalence of such cells exist? By investigating
the immediate consequences of aneuploidy on cell
physiology, we identified mechanisms that eliminate
aneuploid cells. We find that chromosome mis-
segregation leads to further genomic instability that
ultimately causes cell-cycle arrest. We further show
that cells with complex karyotypes exhibit features
of senescence and produce pro-inflammatory sig-
nals that promote their clearance by the immune sys-
tem.We propose that cells with abnormal karyotypes
generate a signal for their own elimination that may
serve as ameans for cancer cell immunosurveillance.

INTRODUCTION

In all organisms analyzed to date, aneuploidy, an unbalanced

karyotype in which one or more chromosomes are present in

excess or reduced copy number, is highly detrimental (Santa-

guida and Amon, 2015a). Aneuploid budding and fission yeast

show proliferation defects under standard growth conditions

(Niwa et al., 2006; Torres et al., 2007). In multicellular organisms,

chromosomal gain or loss is largely lethal (Hodgkin, 2005; Linds-

ley et al., 1972; Lorke, 1994). In humans, for example, all mono-

somies and most trisomies cause embryonic lethality (reviewed

in Hassold and Hunt, 2001). Only trisomy of the gene poorest

chromosome, chromosome 21, is compatible with survival into
638 Developmental Cell 41, 638–651, June 19, 2017 ª 2017 Elsevier
adulthood. However, even this trisomy leads to high levels of

embryonic lethality. Only 12.5% of trisomy 21 fetuses survive

to birth (reviewed in Roper and Reeves, 2006).

The adverse effects of an incorrect karyotype are also

observed at the cellular level. Aneuploid mammalian and yeast

cells exhibit metabolic alterations (Williams et al., 2008), prolifer-

ation defects (Santaguida et al., 2015; Stingele et al., 2012; Tang

et al., 2011; Thompson and Compton, 2010; Torres et al., 2007;

Williams et al., 2008), genome instability (Blank et al., 2015;

Meena et al., 2015; Ohashi et al., 2015; Passerini et al., 2016;

Sheltzer et al., 2011; Zhu et al., 2012), and proteotoxic stress

(Oromendia et al., 2012; Santaguida et al., 2015; Santaguida

and Amon, 2015b; Stingele et al., 2012; Tang and Amon,

2013), and aneuploid mammalian cells have been reported to

activate p53 (Hinchcliffe et al., 2016; Li et al., 2010; López-Garcı́a

et al., 2017; Sansregret et al., 2017; Thompson and Compton,

2010). In addition to traits observed in a broad range of aneu-

ploidies, aneuploid cells exhibit gene-specific phenotypes in

which changes in dosage of a particular gene cause a specific

phenotype (e.g., Dodgson et al., 2016).

The observation that an aneuploid karyotype has detrimental

consequences on cellular fitness is consistent with the low prev-

alence of aneuploid cells in somatic tissues (�2%) (Knouse et al.,

2014). Aneuploid cells are a rare occurrence even in tissues

of mice harboring mutations that cause high levels of chromo-

some mis-segregation. Mice carrying a hypomorphic mutation

in the spindle assembly checkpoint (SAC) component BUB1B

(BUB1bH/H allele) exhibit high levels of chromosome mis-segre-

gation in all tissues where this has been analyzed (Baker et al.,

2004). Yet single-cell sequencing revealed aneuploid cells to

be exceedingly rare in regenerating tissues such as the intestine,

skin, and blood from these animals (Pfau et al., 2016). Whether

aneuploid cells are outcompeted by euploid cells or whether

mechanisms exist that eliminate aneuploid cells from tissues is

not known.

Paradoxically, despite the adverse effects of an aneuploid kar-

yotype on normal cell physiology, the condition is also a hallmark
Inc.
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Figure 1. p53 Activation Is Not an Obligatory Consequence of Chromosome Mis-segregation

(A) Representative images of hTERT RPE1 cells co-expressing PCNA:GFP and RFP:H2B. Unsynchronized cells were treated with DMSO or 0.5 mM reversine and

then immediately filmed for 48 hr. Cells were filmed every 5 min for 6 hr to capture mitotic mis-segregation events and then every 20 min for 42 hr to capture

daughter cell S-phase timing. Scale bar, 5 mm.

(B) Daughter cell fate in NMS-P715-treated hTERT RPE1 cells co-expressing PCNA:GFP and RFP:H2B. Unsynchronized cells were treated with DMSO or 1 mM

NMS-P715 and immediately filmed as described in (A). Bars represent percentage of daughter cells with the indicated cell fate.

(C–E) Schematic representation of experimental method used to separate cells that arrest in G1 following chromosome mis-segregation from cells that continue

to divide (C). RPE-1 cells were synchronized at the G1/S transition by thymidine treatment. Six hours after thymidine release, cells were treated with 0.5 mM

reversine for 12 hr. Six hours later, cells were treated with nocodazole. Twelve hours later, mitotic cells were removed by shake-off and single cells that detached

from the plate were sequenced to determine the karyotype of cells that continue to proliferate after chromosomemis-segregation (cycling). The cells that were not

removed by shake-off were placed into fresh medium containing nocodazole. This procedure was repeated three times to remove all dividing cells. The cells that

remained attached to the plate represented arrested cells (arrested) and their karyotype was determined by single-cell sequencing. Heatmap in (D) shows

chromosome gains and losses in the indicated cell populations. Partially colored boxes represent segmental aneuploidies and are marked as ‘‘yes’’ in the column

SA (for segmental aneuploidies). The graph in (E) shows the degree of genome imbalance, defined as the total number of genes that are either gained or lost as a

consequence of whole chromosome and segmental aneuploidies (mean ± SEM).

(legend continued on next page)
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of cancer, a disease characterized by excessive cell prolifera-

tion. Ninety percent of solid tumors harbor whole chromosome

gains and/or losses (Gordon et al., 2012; Holland and Cleveland,

2009). Multiple, not mutually exclusive hypotheses have been

put forth to explain the prevalence of abnormal karyotypes

in cancer. Chromosome copy-number alterations have been

proposed to drive disease by modulating the dosage of can-

cer driver genes (Davoli et al., 2013). Aneuploidy also endows

cells with phenotypic variability (Beach et al., 2017; Chen

et al., 2015; Rutledge et al., 2016), which could help facilitate

metastasis or resistance to therapeutic interventions. Indeed

aneuploidy has been shown to be associated with meta-

static behavior, resistance to chemotherapy and poor patient

outcome (Bakhoum et al., 2011; Heilig et al., 2009; Lee et al.,

2011; Walther et al., 2008). Finally, the process of chromosome

mis-segregation and aneuploidy of many chromosomes have

been shown to cause genomic instability (Blank et al., 2015;

Crasta et al., 2012; Janssen et al., 2011; Ohashi et al., 2015;

Passerini et al., 2016; Sheltzer et al., 2011; Zhu et al., 2012),

which could fuel cancer genome evolution.

Given thepotential linkbetween aneuploidyand tumorigenesis,

it is critical to understand howabnormal karyotypes affect cellular

physiology. Here, we examine the immediate consequences of

chromosome mis-segregation. We find that following chromo-

some mis-segregation, cells experience replication stress and

genomic instability that cause the evolution of cells with highly

aberrant karyotypes characterized by complex patterns of whole

chromosome and segmental aneuploidies. Such cells cease to

divide, undergo senescence, and produce pro-inflammatory sig-

nals that lead to their elimination by natural killer cells in vitro. Our

results indicate that mechanisms exist that eliminate cells with

aberrant karyotypes and thus protect organisms from cells with

the potential to become cancerous.

RESULTS

Chromosome Mis-segregation Rarely Leads to p53
Activation
Previous studies reported that chromosome mis-segregation

causes p53 activation and a p53-dependent cell-cycle arrest

(Li et al., 2010; Thompson and Compton, 2010). The aneuploid

state per se or events accompanying chromosome mis-segre-

gation could be responsible for this p53 activation. To distin-

guish between these possibilities, we examined the immediate

consequences of chromosome mis-segregation using live cell

microscopy.

Severalmethods have beendeveloped to induce chromosome

mis-segregation. For example, compounds that interfere with

microtubule dynamics or microtubule-kinetochore attachment

cause an SAC-dependent delay in mitosis and induce chromo-

some mis-segregation. Inducing chromosome mis-segregation

in this manner was shown to be associated with p53 activation

in the subsequent G1 phase (Thompson and Compton, 2010).
(F) RPE-1 cells were synchronized at the G1/S transition by thymidine treatment.

DMSO (vehicle control) for 12 hr. After drug wash-out, cells were grown for 66 hr

cells (aneuploid cycling). Arrested aneuploid cells were generated as described in

Actin served as a loading control.

See also Figures S1 and S2.

640 Developmental Cell 41, 638–651, June 19, 2017
However, mitotic arrest exceeding �100 min induces a p53-

dependentG1 arrest irrespective ofwhether or not chromosomes

are mis-segregated (Uetake and Sluder, 2010). We too observed

this phenomenon. We analyzed cells that experienced an

extended mitosis induced by the kinesin Eg5 inhibitor monastrol

by live cell imaging (Mayer et al., 1999). This analysis showed

that the frequency of chromosome mis-segregation and subse-

quent G1 arrest increased with time spent in mitosis (Figure S1),

highlighting that without live imaging it is difficult to compare

fates of cells with andwithoutmis-segregation due to themissing

information about arrest duration.

To avoid G1 arrest caused by a prolonged mitosis, we gener-

ated aneuploid cells by interfering with SAC function rather than

by activating the checkpoint. SAC inactivation does not delay

cells in mitosis but instead accelerates progression through

this cell-cycle stage even when chromosomes are not attached

to the spindle correctly (Figure S2A), and results in aneuploid

progeny.

We examined hTERT immortalized RPE-1 cells stably ex-

pressing proliferating cell nuclear antigen (PCNA)-GFP (to deter-

mine S-phase initiation) and RFP-H2B (to monitor chromosome

segregation) grown in the presence of NMS-P715 or reversine.

Both compounds inhibit the SAC kinase Mps1 (Colombo et al.,

2010; Santaguida et al., 2010). Treatment with NMS-P715

or reversine led to severe chromosome segregation defects.

Each chromosome mis-segregated in 6%–8% of mitoses (Fig-

ures S2D–S2F and Santaguida et al., 2015) and virtually all cells

harbored lagging chromosomes during anaphase and micronu-

clei in the following G1 (Figures 1A, S2B, and S2C). Despite

severe chromosome mis-segregation, however, mitotic arrest

did not occur but cells in fact progressed through mitosis faster

than vehicle-control treated cells (Figure S2A). Notably, chromo-

somemis-segregation did not lead to arrest in the following G1 in

the vast majority of aneuploid daughter cells (�80%; Figure 1B).

This finding indicates that aneuploidy per se does not cause cell-

cycle arrest in G1.

Although 80% of cells that mis-segregated chromosomes

continued to divide, 9% of cells arrested in G1. To determine

why these 9% of cells arrested in G1, we developed a method

to separate G1-arrested cells from cycling cells following chro-

mosome mis-segregation (Figure 1C). In brief, we induced

chromosome mis-segregation and then transiently exposed

cells to the microtubule poison nocodazole during the cell cycle

following chromosome mis-segregation (Figure 1C). Dividing

cells arrest in mitosis and can be removed from the plate by

shake-off (Figure 1C). We repeated this procedure multiple

times to also eliminate cells that progress through the cell cycle

more slowly. The only cells that remained adhered to the plate

following this procedurewere cells that arrested in the interphase

immediately following the mitosis during which chromosome

mis-segregation was induced. Single-cell sequencing revealed

highly abnormal karyotypes characterized by multiple chro-

mosome gains and losses in cells that arrested immediately
Six hours after thymidine wash-out, cells were treated with 0.5 mM reversine or

(for a total of 72 hr after mitosis) to generate populations of aneuploid dividing

(C). The levels of p53, p21, and p16 were determined by western blot analysis.



Figure 2. DNA Damage Incurred during Chromosome Mis-segrega-

tion Causes p53 Activation

(A) RPE-1 cells were synchronized at the G1/S transition by thymidine treat-

ment. After thymidine wash-out, cells were treated with 0.5 mM reversine or

DMSO (vehicle control). The average number of g-H2AX foci per cell was

determined at the indicated times (mean ± SEM). ***p < 0.0001; NS, not sig-

nificant (ANOVA plus Bonferroni’s test). F test of variance: 3-hr time point,

7.54718 3 10�5; 6-hr time point, 0.002922704.

(B) RPE-1 cells were exposed to a single round of small interfering RNA

(siRNA)-mediated depletion of Mad2 or control (Ctrl) oligo followed by thymi-

dine arrest. Fourteen hours after thymidine wash-out (which corresponds

roughly to 2 hr after mitosis), control- and Mad2-depleted cells were exposed

to the indicated kinase inhibitors and 5-ethynyl-20-deoxyuridine (EdU). The

percentage of EdU-positive cells was determined 36 hr after thymidine release

(�24 hr after mitosis). The graph shows the percentage of EdU-positive cells

normalized to control-depleted cells. The following small-molecule inhibitors

were used: VE821 (ATR inhibitor, working concentration 1 mM), SB203580 (p38

inhibitor, working concentration 10 mM), Chk2 inhibitor II (Chk2 inhibitor,
following chromosome mis-segregation (Figures 1D and 1E).

Whereas aneuploid cells that still divided harbored genomic im-

balances, which involved less than 5% of their genomes, aneu-

ploid arrested cells exhibited genomic imbalances involving

more than 20%of their genomes (Figure 1E). In addition to whole

chromosome gains and losses, 42% of cells that had arrested in

G1 (5 out of 12 cells) also harbored segmental aneuploidies

compared with about 18% of aneuploid cells that were still

able to divide (2 out of 11 cells; note that the segmental gain on

chromosome 10 was not included in this analysis as it is a char-

acteristic of RPE-1 cells [Zhang et al., 2015]). Aneuploid arrested

cells also exhibited signs of cellular senescence. Levels of p53,

and the CDK inhibitors p21 and p16, were elevated (Figure 1F).

Inactivation of theDNADamageCheckpoint Suppresses
the G1 Arrest Following Chromosome Mis-segregation
Segmental aneuploidies in G1 arrested aneuploid cells could be

the result of DNA damage incurred during cytokinesis (Janssen

et al., 2011), during accelerated anaphase entry (Figure S2A), or

in micronuclei (Crasta et al., 2012). Their presence in G1 arrested

aneuploid cells thus raised the possibility that cell-cycle arrest

was due to DNA damage associated with chromosome mis-

segregation. To test this we analyzed g-H2AX levels following

chromosomemis-segregation. Although not detectable bywest-

ern blot analysis (Figure S3A), we observed a transient, modest

increase in the average number of g-H2AX foci 3–6 hr after chro-

mosome mis-segregation (Figures 2A, S3B, and S3C; Janssen

et al., 2011). More importantly, preventing activation of the DNA

damage response by inhibiting the DNA damage response

kinases ATR, p38, or CHK2 or inactivation of p53 partially sup-

pressed the infrequent G1 delay following chromosome mis-

segregation (Figures 2B, 2C, and S3D). These findings suggest

that DNA damage occurring during chromosome mis-segrega-

tionmight be responsible for theG1 arrest following chromosome

mis-segregation in a small number of cells. Support for this

conclusion comes from the finding that constitutive aneuploidies

donot elicit a p53 response.Mouseembryonic fibroblasts (MEFs)

trisomic for various different chromosomes do not activate p53

(Tang et al., 2011), nor does p53depletion suppress their prolifer-

ation defects (Sheltzer et al., 2017). It is also possible that

stresses associated with aneuploidy, such as oxidative and pro-

teotoxic stress, which scale with the degree of aneuploidy, cause

p53 activation. Indeed, we note that cells which arrest in G1 and

activate p53 following chromosome mis-segregation harbor

highly aberrant karyotypes (Figure 1D).

Aneuploidy Causes DNA Replication Defects
While aneuploidy per se did not impair G1 progression, it

was possible that other cell-cycle stages were affected by an
working concentration 10 mM). Graph shows mean ± SEM. **p < 0.01, ANOVA

plus Bonferroni’s test.

(C) RPE-1 cells, either wild-type for p53 or lacking the tumor suppressor (p53

CRISPR), were synchronized at the G1/S transition by thymidine treatment.

After thymidine wash-out, cells were treated with 0.5 mM reversine or DMSO

(vehicle control). Fourteen hours later, the drug was washed out and cells were

exposed to EdU. Percentage of EdU-positive cells was determined at the

indicated times. Graph shows mean ± SEM.

See also Figure S3.
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Figure 3. Chromosome Mis-segregation Causes Replication Stress

(A and B) RPE-1 cells were treated with reversine (0.5 mM; aneuploid) or vehicle control (euploid) for 24 hr. The inhibitor was then washed out and cells were

arrested in G1 by treatment with mimosine for 24 hr. After mimosine wash-out, cells were placed into fresh medium and 3 hr later pulse labeled with IdU (5-iodo-

20-deoxyuridine; green) for 60 min and chased with CldU (5-chloro-20-deoxyuridine; red) for 60 min. Sample fiber images from euploid and aneuploid cells are

shown in (A). Fork rate, fork density, and fork stall rate are shown in (B).

(C and D) Unsynchronized RPE-1 cells co-expressing PCNA:GFP and RFP:H2B were treated with DMSO or reversine (2 mM), imaged every 5 min for 5 hr to

capture mitotic mis-segregation events, and imaged every 20 min for 48 hr to capture daughter cell S-phase timing. Representative images of mother cell

anaphase and one daughter cell S phase after treatment with DMSOor reversine are shown in (C). Quantification of the time interval fromPCNA focus appearance

to dissolution, a measure for S-phase duration in living cells, is shown in (D). The analysis was performed on daughter cells whose mother cells divided prior to

addition of reversine (reversine exposure occurred during G1) and on daughter cells whose mothers mis-segregated chromosomes in the presence of reversine

(reversine exposure occurred during G2; mean ± SD). Scale bar, 5 mm.

(E and F) RPE-1 cells were treated with 0.5 mM reversine or vehicle control for 24 hr. The drug was then washed out and cells were synchronized in G1 using

mimosine for 24 hr. After mimosine wash-out, cells were placed into fresh medium and 53BP1 foci were analyzed 4 hr later. Representative images (E) and

quantification (F) are shown. Scale bar, 5 mm.

See also Movie S1.
unbalanced karyotype. Previous studies in budding yeast and

human cells showed that many but not all aneuploidies cause

DNA replication defects and genomic instability because of

changes in gene copy number of factors critical for DNA replica-

tion and segregation (Blank et al., 2015; Meena et al., 2015; Oha-

shi et al., 2015; Passerini et al., 2016; Sheltzer et al., 2011; Zhu

et al., 2012). To assess the immediate effects of chromosome

mis-segregation on the subsequent S phase, we induced chro-

mosome mis-segregation using reversine (aneuploid) or did not

interfere with mitosis (euploid), then synchronized cells in G1

and measured DNA replication fork rate by DNA combing after

release from the G1 arrest. Fork rates were significantly slower

in cells that had mis-segregated their chromosomes compared

with their euploid counterparts (0.59 ± 0.02 kb min�1 versus

0.88 ± 0.03 kb min�1; Figures 3A and 3B). Furthermore, replica-
642 Developmental Cell 41, 638–651, June 19, 2017
tion fork stalling was increased in aneuploid cells (Figure 3B).

Live cell imaging of reversine-treated cells confirmed this result

(Figures 3C and 3D; Movie S1). PCNA foci, a sign of ongoing

DNA replication, persisted for longer times in cells that had

mis-segregated their chromosomes in the preceding mitosis

(Figure 3D). The prolonged presence of PCNA foci in cells was

not a consequence of reversine treatment. Cells that were in

G1 at the time of reversine treatment (cells that had completed

mitosis but did not harbor PCNA foci at the time of reversine

addition) were slightly delayed in S phase by reversine treatment

(Figures 3D and Table S1; compare G1 population ± reversine),

but this delay was not nearly as dramatic as that of cells

that had mis-segregated chromosomes because reversine was

added prior to mitosis (Figure 3D; compare G2 population ±

reversine). Not surprisingly, DNA replication defects were



accompanied by DNA damage as judged by an increase in

53BP1 foci (Figures 3E and 3F). Our results indicate that chromo-

some mis-segregation leads to DNA replication stress in the

following S phase, which results in DNA damage. We propose

that genomic imbalances caused by the aneuploid state as

well as replication problems in micronuclei are causes of this

replication defect (Passerini et al., 2016).

Chromosome Mis-segregation Triggers the Evolution of
Complex Abnormal Karyotypes
What are the consequences of aneuploidy-induced DNA

damage? Do such cells permanently arrest in G2 or do some of

them proceed to mitosis? Our immunofluorescence studies indi-

cate that the latter occurs. We observed DNA damage to persist

into pro-metaphase. Aneuploid pro-metaphase cells harbored

increased levels of g-H2AX foci compared with euploid cells

but lower than those seen in cells treated with aphidicolin,

which interferes with replication of late replicating regions of

the genome and results in DNA damage persisting into prometa-

phase (Figures 4A and 4B; Minocherhomji et al., 2015).

To further characterize how chromosome mis-segregation

affects genome integrity, we analyzed the cell division following

the mitosis during which cells were treated with reversine by live

cell microscopy (henceforth second mitosis; Figure 4C). Aneu-

ploid cells exhibited a high degree of mitotic aberrations during

the second mitosis, lagging chromosomes during anaphase

and micronuclei in the following G1 (Figures 4D, 4E, and S4;

Movie S2). Importantly, these abnormalities were not due to

incomplete drug wash-out and, hence, lack of an SAC function.

Duration of the abnormal second mitoses was significantly

longer than that of unperturbed mitoses, indicating that the spin-

dle assembly checkpoint was active (Figure 4F). Furthermore,

we observed ultrafine anaphase DNA bridges—DNA threads

that connect under-replicated genomic regions—as revealed

by staining with antibodies against the Bloom’s syndrome heli-

case (BLM) protein and Plk1-interacting checkpoint helicase

(PICH) protein (Figure 4G).

Signs of DNAdamage, identified as 53BP1 foci, were apparent

even in G1 following this second mitosis (Figures 5A and 5B).

Comparison of the karyotypes of cells immediately after chromo-

some mis-segregation (‘‘First cell cycle’’ in Figures 5C, 5D, and

S5A) and of cells that had undergone an additional mitosis there-

after confirmed that complex karyotypes evolve in aneuploid

cells (‘‘Second cell cycle’’ in Figures 5C, 5D, and S5B). Only

20% of cells displayed greater than two chromosome aberra-

tions immediately after chromosome mis-segregation (Figures

5C and 5D, in agreement with Figures S2C–S2F and Colombo

et al., 2010; Hewitt et al., 2010; Santaguida et al., 2015, 2010),

but in the second mitosis, 80% of cells harbored more than

two chromosome gains or losses (Figure 5). Together, our results

indicate that chromosome mis-segregation has consequences

beyond the production of cells with whole chromosome gains

or losses. It sets in motion a process whereby replication stress

and DNA damage drive chromosome segregation errors and

mitotic aberrations in the next mitosis.

Cells with Complex Karyotypes Senesce
Our results indicate that chromosome mis-segregation leads

to the generation of cells with highly aberrant karyotypes. Their
ability to undergo mitosis decreased as karyotypes became

more aberrant (Figure 6A), indicating that they arrest in inter-

phase. To characterize the cells that had stopped proliferating

within 3 days after they had been induced to mis-segregate

their chromosomes, we induced chromosome mis-segregation,

allowed cells to divide for 3 days, and repeatedly used the

previously described nocodazole shake-off protocol to remove

cells that were still proliferating, which we determined to be

approximately 60% (Figure 6B). Of the 40% of cells that had

arrested within 3 days following chromosome mis-segregation,

approximately half had never undergone a cell division and the

other half had undergone at least one cell cycle as judged by

5-ethynyl-20-deoxyuridine (EdU) incorporation (Figure 6C).

The cell population obtained in this manner exhibited the

same characteristics as cells that arrested in G1 immediately

following chromosome mis-segregation. They harbored highly

abnormal karyotypes with multiple whole chromosome and

segmental aneuploidies (Figures 6D and 6E) and displayed the

hallmarks of senescence, including elevated levels of the senes-

cence markers p53, p21, and p16 (Figure 6F), higher numbers of

g-H2AX foci (Figure 6G), and increased senescence-associated

b-galactosidase activity (Figure 6H and Baker et al., 2004).

Like cells that arrest in G1 immediately following chromosome

mis-segregation, inactivation of p53 partially suppressed their

cell-cycle arrest. We induced chromosome mis-segregation,

removed proliferating cells by nocodazole shake-off, and deter-

mined the number of cells that detached from the plate as a

measure of the percentage of the population that continued to

proliferate following chromosomemis-segregation. This analysis

revealed that fewer aneuploid cells arrested in interphase when

p53 was deleted compared with aneuploid cells with intact p53

(Figure 6I). Our results indicate that approximately 50% of cells

arrest in G1 due to p53 activation whereas other pathways pre-

vent cell proliferation in the other half of G1 cells.

The Aneuploid State Causes a Senescence-Associated
Gene Expression Signature
Gene expression analysis of the G1 arrested aneuploid cells

was consistent with cells being senescent. We observed down-

regulation of genes involved in cell-cycle progression (Figures

S6A–S6C) and a senescence-associated gene expression pro-

file known as senescence-associated secretory phenotype

(SASP) (Freund et al., 2010) (Figure S6D and Table S2; the lead-

ing edge of the enrichment includes the genes listed in Table S3).

DNA damage and cell-cycle arrest are likely a major cause of the

SASP gene expression signature observed in cells with complex

karyotypes, although other aspects of the aneuploid state likely

also contribute. MEFs harboring specific trisomies also show an

SASP gene expression pattern (Figure S6E and Sheltzer et al.,

2012), yet these cells do not experience significant DNA damage

nor activate p53 nor undergo cell-cycle arrest (Figure S6F) (Tang

et al., 2011; Williams et al., 2008).

Cells with Complex Karyotypes Produce
Pro-inflammatory Signals
Our gene expression analysis not only revealed the existence

of an SASP-like gene expression signature in aneuploid cells

but also the upregulation of genes that mediate inflammation

and an immune response (Figure 7A). The top seven upregulated
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Figure 4. Chromosome Mis-segregation Results in Genomic Instability

(A and B) RPE-1 cells were synchronized at the G1/S transition by thymidine treatment. Six hours after thymidine release, cells were treated with control vehicle

(euploid) or 0.5 mM reversine (aneuploid) for 12 hr. Twelve hours after drug wash-out, cells were treated with the CDK1 inhibitor RO-3306 for 12 hr to enrich for G2

cells. Cells were then released in fresh medium containing nocodazole and g-H2AX foci were analyzed 2 hr later. CREST was used to mark centromeres. As a

positive control, cells were treated with aphidicolin 18 hr after thymidine release. Representative images are shown in (A). Quantification of g-H2AX foci is shown

in (B). g-H2AX is in green, CREST in red, and DNA in blue (mean ± SEM). Scale bar, 10 mm. **p < 0.01, ANOVA plus Bonferroni’s test.

(C–F) RPE-1 cells stably expressing H2B-GFP were synchronized at the G1/S transition by thymidine treatment. Six hours after thymidine wash-out, cells were

treated with control vehicle (euploid) or 0.5 mM reversine (aneuploid) for 12 hr. After drug wash-out, cells were filmed every 5 min. Schematic representation of

experimental method is shown in (C). Representative images from live imaging datasets are shown in (D). Arrows show lagging chromosomes and micronuclei.

Quantification of mitotic aberrations (lagging chromosomes and micronuclei) is shown in (E). Length of mitosis (nuclear envelope breakdown [NEBD] to DNA

decondensation) is shown in (F) (mean ± SEM).

(G) Cells were grown as described in (A). After RO-3306 wash-out, cells were released into fresh medium and fixed 90 min later to analyze DNA bridges in

anaphase. Representative images of DNA bridges are shown. PICH is in green, BLM in red, CREST in magenta, and DNA in blue. Scale bar, 10 mm.

See also Figure S4 and Movie S2.
gene set categories in arrested cells with complex karyotypes

represented gene expression profiles associated with an im-

mune response. Interestingly, with the exception of the ‘‘Inter-
644 Developmental Cell 41, 638–651, June 19, 2017
feron alpha/beta signaling’’ gene set, immune response gene

sets observed in aneuploid arrested cells did not match gene

sets previously identified in cells in which senescence was



Figure 5. Chromosome Mis-segregation Triggers the Evolution of

Complex Abnormal Karyotypes

(A andB) Cells were grown as described in Figure 4A. After RO-3306wash-out,

cells were released into fresh medium and fixed 6 hr later to analyze 53BP1

foci in the following G1. Representative images are shown (A). 53BP1 is in red,

g-H2AX in green, CREST inmagenta, andDNA in blue. Quantification of 53BP1

foci in G1 is shown in (B). Scale bar, 5 mm.

(C and D) Karyotype analysis after the first and second cell cycle following

chromosome mis-segregation (see Figure S5 for experimental details). The

percentage of cells with more than two chromosome changes (C) and the total

number of chromosomal changes per cell (D) are shown for aneuploid cells

after the first and second cell cycle following chromosome mis-segregation.

*p < 0.05, Student’s t test.

See also Figure S5.
induced by DNA damage (Figure 7A and Krizhanovsky et al.,

2008). Furthermore, we found the cGAS/STING pathway, an

innate immune system pathway that is activated in response to

cytosolic DNA, to be upregulated in cells with complex karyo-

types (Schneider et al., 2014) (Figure S7G and Table S2).

Whether these findings indicate that aneuploid arrested cells

exhibit a different immune response than cells that senesce

due to DNA damage remains to be determined. We conclude

that cells that arrest in G1 with highly abnormal karyotypes

induce multiple immune response pathways. In agreement with

the idea that the aneuploid state produces a pro-inflammatory

signal is the recent finding that fibroblasts derived from Down

syndrome individuals activate an interferon response (Sullivan

et al., 2016).

Consistent with the inflammatory gene expression profile

observed in cells with complex karyotypes, we found the secre-

tion of cytokines (interleukin-6 [IL-6], IL-8, and CCL2) to be

elevated (Figure 7B). Interestingly, we also observed a subtle

elevation in secretion of CCL2 but not other cytokines in early-

passage MEFs derived from BUB1bH/H (Figure 7C), which do

not exhibit signs of senescence. This finding raises the interesting

possibility that increased immunogenicity is not just a character-

istic of cells with complex karyotypes that ceased to divide but

also of cells with aberrant karyotypes that are proliferating.

To further characterize the immunogenic potential of arrested

aneuploid cells,weexamined various cell-surfaceproteins known

to trigger recognition by the innate immune system, specifically

natural killer (NK) cells. First, we examined expression of MICA

and MICB. MICA and MICB are cell-surface proteins that belong

to the NK group 2, member D (NKG2D) ligand family, and activate

NK cells in response to proteotoxic stress (Raulet and Guerra,

2009). Although euploid cells expressed MICA and MICB at their

cell surface,MICA/B levels were elevated 2-fold in arrested aneu-

ploid cells (Figures 7D and 7G; Chien et al., 2011; Krizhanovsky

et al., 2008). This increase was not due to differences in cell size

between aneuploid and euploid cells, as we compared MICA/B

mean fluorescence intensity between cell populations of the

same size (Figure S7A). We also examined the expression of the

NKG2D ligands ULBP1 and ULBP2 at the cell surface. ULBP1

and ULBP2 are induced by cellular stresses and DNA damage

(Raulet andGuerra, 2009). Their levelswere also elevated in aneu-

ploid arrested cells compared with euploid cells but did not reach

levels seen in euploid cells treated with the DNA-damaging agent

doxorubicin (Figures 7E, 7G, and S7B–S7D).

DNAM1 is an adhesion molecule at the surface of NK cells

which mediates interactions between NK cells and target cells

(Raulet and Guerra, 2009). This protein binds to CD112 (also

known asNectin-2) andCD155 (also known as PVR), two surface

molecules expressed in response to DNA damage (Raulet and

Guerra, 2009). Aneuploid cells expressed CD112 and CD155 at

elevated levels (Figures 7F, 7G, and S7E–S7G). CD155 levels,

in particular, were as high in aneuploid arrested cells with com-

plex karyotypes as in euploid cells treated with doxorubicin (Fig-

ures 7F and 7G). Finally, we found phosphorylation of STAT3

(Y705) and SAPK/JNK (T183/Y185) (Figure 7H) to be higher in

aneuploid arrested cells, which suggests that the inflammatory

response caused by arrested cells with complex karyotypes trig-

gers a feedforward loop in which secreted cytokines propagate

the inflammation response by activating other inflammatory
Developmental Cell 41, 638–651, June 19, 2017 645



Figure 6. Chromosome Mis-segregation Causes the Generation of Cells with Complex Karyotypes that Undergo Senescence

(A) RPE-1 cells were treated with reversine or control vehicle for 24 hr. Cells were exposed for 12 hr to nocodazole either after wash-out or 24 hr later, to determine

the ability of cells to enter mitosis during the first or second cell cycle following chromosome mis-segregation (mean ± SEM).

(B) Schematic representation of the experimental method used to isolate arrested cells with complex karyotypes (see STAR Methods for details). Shown below

the cartoon is the percentage of cells that detached from the plate after each shake-off.

(C) Aneuploid arrested cells were isolated as described in STAR Methods. Cells were exposed to EdU after reversine wash-out, plated on coverslips after the

fourth nocodazole shake-off, and fixed 12 hr later to determine the percentage of EdU-positive cells. Graph shows mean ± SEM.

(D and E) Aneuploid arrested cells were isolated as described in STAR Methods and their karyotype determined by single-cell sequencing. The heatmap of

chromosome gains and losses of arrested cells with complex karyotypes is shown in (D). Partially colored boxes represent segmental aneuploidies and are

marked as ‘‘yes’’ in the column SA (for segmental aneuploidies). The graph in (E) shows the degree of genome imbalance, defined as the total number of genes

that are either gained or lost as a consequence of whole chromosome and segmental aneuploidies (mean ± SEM). The ‘‘Cycling’’ sample is the same as presented

in Figure 1E and is composed of aneuploid cells able to divide.

(F) RPE-1 cells were synchronized at the G1/S transition by thymidine treatment. Six hours after thymidine release, cells were treated with DMSO (euploid) or

0.5 mM reversine (aneuploid) for 12 hr. After wash-out, cells were placed into freshmedium and harvested 18 or 66 hr later, which corresponds to 24 and 72 hr after

mitosis, respectively. Arrested cells were obtained as described in (B). The levels of p53, p21, p16, and g-H2AX were determined by western blot analysis. Actin

served as a loading control. Euploid cells treatedwith doxorubicin for 6 or 12 hr were used as positive controls. Euploid and aneuploid samples represent cells that

were initially treated with DMSO or 0.5 mM reversine, respectively.

(G) Euploid, aneuploid cycling, and aneuploid arrested cells were generated as described in STAR Methods. The graph shows the quantification of g-H2AX foci

per cell. Euploid cells treated with doxorubicin for 12 hr were used as a positive control. Graph shows mean ± SEM.

(H) Senescence-associated b-galactosidase (b-Gal) activity was determined in euploid cells and arrested cells with complex karyotypes obtained as described

in (B).

(I) The percentage of cycling and arrested euploid or aneuploid RPE-1 cells, either wild-type or lacking p53, was determined following the scheme shown in (B).

Graph shows the percentage of arrested cells or cells recovered after the indicated mitotic shake-offs.

See also Tables S2 and S3.
pathways such as those dependent on STAT3 and SAPK/JNK

(Kyriakis and Avruch, 2001). Together, these findings indicate

that aneuploid arrested cells elicit an immune response.
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To test whether aneuploid arrested cells were indeed targeted

by immune cells, we co-cultured euploid cells or aneuploid ar-

rested cells with NK92 cells and followed cell viability by live



Figure 7. Aneuploidy Triggers an Immune Response

(A) Canonical pathway gene set (c2cp of msigdb) enrichment for upregulated genes in arrested cells with complex karyotypes. Normalized enrichment scores

(NES) for the top seven upregulated gene sets are shown. The columns on the right show the normalized enrichment score for these gene categories in gene

expression datasets obtained from cells in which senescence was induced by DNA damage (Iannello et al., 2013; Krizhanovsky et al., 2008).

(B) Cytokine levels were determined in supernatants of euploid and arrested cells with complex karyotypes (obtained as described in Figure 6B). Graph shows the

cytokine fold change in arrested cells with complex karyotypes normalized to euploid cells (mean ± SEM).

(C) Early passage wild-type and BUB1BH/H mouse embryonic fibroblasts were cultured and CCL2 levels were determined in culture supernatants (mean ± SD).

(D–G) MICA/B (D), CD155/PVR (E), and ULBP2 (F) cell surface levels in euploid cells and aneuploid arrested cells (obtained as described in Figure 6B). Euploid

cells treated with doxorubicin (100 ng/mL, 48 hr) were used as a positive control for CD155/PVR and ULBP2 expression. Graphs show fluorescence intensity of

cells of similar size (for gating see Figure S7). Immunoglobulin G2A (IgG2A) isotype control was used for MICA/B, ULBP2, and ULBP1 staining in euploid cells

(Figure S7B). IgG1 isotype control was used for CD155/PVR and Nectin-2/CD112 in euploid cells (Figure S7A). Mean fluorescence intensities are listed in (G).

(H) Euploid and arrested cells with complex karyotypes were generated as described in Figure 6B and levels of the indicated protein determined by ELISA

(mean ± SEM).

(I) Euploid and arrested cells with complex karyotypes were generated as described in Figure 6B. Cells were co-cultured with NK92 cells at a target/effector ratio

of 1:10 and filmed every 10 min for 36 hr. Representative images from live imaging datasets are shown.

(J) Euploid and aneuploid arrested cells were generated as described in Figure 6B. Cells were seeded and allowed to attach to the plate for 12 hr, after whichNK92

cells were introduced. At the indicated times, dead and NK92 cells were removed by gentle shake-off and the remaining cells counted, and are shown as a

percentage of cells grown for the same time in the absence of NK92 cells (mean ± SD). ***p < 0.0001; *p < 0.05; NS, not significant (ANOVA plus Bonferroni’s test).

(K) Euploid and arrested cells with complex karyotypes and NK92 cells were cultured as in (J) for 24 hr. For experiments with antibodies blocking NKG2D, NK92

cells were pre-incubated with 20 mg/mL anti-NKG2D antibody for 3 hr before co-culturing them with RPE-1 cells. Dead and NK92 cells were removed, and the

remaining cells counted and normalized to cells grown under the same conditions but without co-culture (mean ± SEM). ***p < 0.0001; NS, not significant (ANOVA

plus Bonferroni’s test).

See also Figures S6 and S7; Movie S3.
cell imaging (see STAR Methods). NK92 cells did not interact

with euploid cells, but effectively killed cells with complex karyo-

types (Figures 7I and 7J; Movie S3). NK92-mediated killing of

aneuploid cells was not immediate but started 6–12 hr after mix-

ing of cells (Figure 7J and Movie S3). Despite the fact that NK92-

mediated killing occurred only after a lag, the response was

nevertheless NK92 cell specific. Aneuploid arrested cells did

not die when cultured in the absence of NK92 cells (Figure S7H).
Further evidence supporting the conclusion that selective killing

occurred stems from the observation that the interaction be-

tween NK cells and aneuploid arrested cells was at least partially

dependent on the NK cell receptor NKG2D. Pre-incubation of NK

cells with blocking antibodies against NKG2D decreased their

ability to kill aneuploid arrested cells (Figure 7K). We conclude

that cells with complex karyotypes elicit an innate immune

response aimed at their removal.
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DISCUSSION

By investigating the immediate consequences of aneuploidy on

cells, we identified mechanisms that eliminate aneuploid cells.

Chromosome mis-segregation leads to genomic instability and

increased karyotype complexity (Blank et al., 2015; Meena

et al., 2015; Ohashi et al., 2015; Passerini et al., 2016; Sheltzer

et al., 2011; Zhu et al., 2012; and this study). Cells with complex

aberrant karyotypes ultimately cease to divide, exhibit features

of senescence, and produce pro-inflammatory signals that pro-

mote their clearance by the immune system. Together, these

findings indicate that multiple mechanisms prevent the accumu-

lation of aneuploid cells in tissues. A senescence program limits

their proliferation and the innate immune system facilitates their

clearance. The latter mechanism could very well represent a

means whereby cancer cells, which are frequently highly aneu-

ploid, are recognized and eliminated by the immune system.

Cells Cannot Count Their Chromosomes
It was previously reported that chromosome mis-segregation

induced by interference with spindle function causes p53 activa-

tion (Thompson and Compton, 2010). This observation led to the

interesting proposal that the cells somehow ‘‘know’’ how many

chromosomes they have and that a chromosome number that

deviates from the euploid karyotype triggers a p53 response.

However, chromosome mis-segregation brought about by inter-

fering with spindle function results in a mitotic delay, which when

it exceeds 100 min causes p53 activation in the subsequent G1

phase irrespective of whether or not chromosome mis-segrega-

tion occurred (Uetake and Sluder, 2010), and requires the DNA

damage binding protein 53BP1 and the deubiquitinating enzyme

USP28 (Lambrus and Holland, 2017). To examine the effects of

chromosome mis-segregation on cell-cycle progression without

this complication, we used methods to interfere with chromo-

some segregation that accelerated rather than delayed mitosis.

Live cell imaging of cells induced to mis-segregate chromo-

somes in this manner showed that the vast majority of cells

that mis-segregate chromosomes do not delay or arrest in G1

following chromosome mis-segregation. p53 activation and a

p53-dependent cell-cycle arrest do not occur in cells harboring

constitutive aneuploidies either (Sheltzer et al., 2017; Tang

et al., 2011), further supporting the idea that aneuploidy per se

does not trigger a p53-dependent G1 arrest.

While the vast majority of cells that mis-segregated chromo-

somes continued to proliferate, some cells (10%–15%, depend-

ing on the experimental setup) do arrest in G1. Such cells harbor

highly complex karyotypes and show signs of DNA damage.

We propose that DNA damage accrued during chromosome

mis-segregation is largely responsible for p53 activation and

G1 arrest in these cells. In agreement with this hypothesis is

the observation that inactivation of DNA damage-responsive ki-

nases or p53 greatly reduces the number of cells that arrest in G1

following chromosome mis-segregation. We further note that a

previous study utilizing cells harboring a mutant allele of the

SAC target Cdc20 (CDC20AAA) that is resistant to SAC inhibition

found that p53 is activated by the DNA damage checkpoint

kinase ATM in aneuploid cells (Li et al., 2010). Several sources

of DNA damage likely contribute to p53 activation. Lagging

chromosomes might become trapped in the cytokinetic furrow
648 Developmental Cell 41, 638–651, June 19, 2017
(Janssen et al., 2011), which could lead to DNA damage but

perhaps not breakage of chromosomes (Houchmandzadeh

et al., 1997; Maciejowski et al., 2015). Premature anaphase entry

induced by SAC inactivation could lead to anaphase onset in the

presence of incompletely replicated or decatenated DNA. DNA

damage could also occur when chromosomes contained in

micronuclei are exposed to cytoplasmic nucleases, due to

ruptured nuclear envelopes (Crasta et al., 2012; Hatch et al.,

2013; Janssen et al., 2011). Aneuploidy-associated stresses

that include oxidative, metabolic, and proteotoxic stress also

likely contribute to p53 activation (Kruiswijk et al., 2015), espe-

cially in cells with high levels of genomic imbalances such as

is seen in aneuploid cells that arrest in G1. We conclude that

the aneuploid state per se does not lead to p53 activation and

G1 arrest, whereas events associated with chromosome mis-

segregation such as DNA damage and aneuploidy-associated

stresses do. Thus, p53 activation is a potential but not an oblig-

atory outcome of chromosome mis-segregation.

Aneuploidy Causes Chromosome Instability
Previous analyses showed that human and yeast cells harboring

many different constitutive aneuploidies exhibit DNA replication

and repair defects (Blank et al., 2015; Ohashi et al., 2015; Pass-

erini et al., 2016; Sheltzer et al., 2011; Zhu et al., 2012). Here, we

show that this effect on DNA replication is immediate. Our

studies in yeast and those of others in mammalian cells further

point to changes in the levels of DNA replication factors as being

responsible for these DNA replication defects. In yeast, specific

chromosome gains cause specific DNA replication and repair

defects, indicating that altered expression of specific genes

located on the aneuploid chromosome is responsible for the

observed defects (Sheltzer et al., 2011; Zhu et al., 2012). In

mammalian cells, multiple DNA replication factors such as the

single-strand DNA binding protein RPA and the lagging-strand

DNA polymerase d have been shown to be haploinsufficient

(Murga et al., 2016; O’Driscoll, 2008). Furthermore, aneuploid

cells downregulate the expression of DNA replication proteins,

such as the MCM helicases (Passerini et al., 2016).

The aneuploidy-induced aberrant S phase precipitates

further chromosome instability. DNA damage incurred during

the abnormal S phase persists into mitosis, leading to chro-

mosome mis-segregation and other mitotic abnormalities.

We note that this finding could provide an explanation for

the puzzling observation that cancers harbor highly abnormal

karyotypes, yet mutations in genes encoding chromosome

segregation factors are rare in the disease (Kops et al., 2005).

Our data show that a single chromosome mis-segregation event

can set in motion the evolution of complex karyotypes that are

characteristic of solid tumors.

Aneuploidy Causes an Innate Immune Response
Previous studies showed that aneuploidy is a rare occurrence in

tissues even when chromosome segregation is compromised

(Pfau et al., 2016), raising the possibility that mechanisms exist

to eliminate cells with highly aberrant karyotypes in vivo. Our

findings indicate that this is indeed the case. Cells with complex

karyotypes express higher levels of NKG2D ligands, such as

MICA/B and ULBPs, and of the DNAM1 ligands CD112 and

CD155. These cell-surfacemoleculesmediate NK cell activation,



trigger NK-mediated clearance in vitro (Iannello et al., 2013; Kriz-

hanovsky et al., 2008), and have been shown to mediate tumor

cell recognition (Raulet and Guerra, 2009).

Several characteristics of aneuploid cells likely contribute to

their recognition by NK cells. For example, aneuploid arrested

cells experience DNA damage and produce an SASP gene

expression signature, which were previously shown to elicit NK

cell recognition and to play a crucial role in the removal of cancer

cells in vivo (Raulet and Guerra, 2009). Upregulation of genes

regulated by the cGAS/STING pathway could hint at the

presence of DNA in the cytoplasm in aneuploid arrested cells

(Lan et al., 2014). The aneuploid state per se might also trigger

immune recognition. MEFs harboring specific trisomies exhibit

a gene expression pattern very similar to that of aneuploid

arrested cells, yet these cells do not experience significant

DNA damage nor undergo cell-cycle arrest. Aneuploidy causes

a number of stresses such as proteotoxic stress and oxidative

stress (Santaguida and Amon, 2015a), which have previously

been shown to induce MICA/B and DNAM1-ligand expression,

respectively (Raulet and Guerra, 2009). Moreover, it is important

to note that the proteome of aneuploid cells is fundamentally

altered because changes in gene copy number generally lead

to changes in protein levels (Santaguida and Amon, 2015a).

Aneuploidy-induced changes in the cell-surface proteome could

also elicit an immune response.

It has not escaped our attention that our study could shed

light on how the immune system recognizes cancer cells. Neo-

antigens have been proposed to be a major source of cancer

immunosurveillance (Schumacher and Schreiber, 2015). Our

data raise the possibility that immune recognition of cancer

cells is also mediated by their aneuploid state and the physiolog-

ical changes associated with complex aberrant karyotypes. At

some point during disease evolution, however, aneuploid cancer

cells escape immune detection and, once this point has been

reached, aneuploidy appears to correlate with immune evasion

(Davoli et al., 2017). Understanding which aspect of tumori-

genesis transforms aneuploidy from an immunogenic trait into

an immune evasive property will be key to understanding cancer

immune evasion.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-GAPDH Santa Cruz Cat# sc-365062; RRID: AB_10847862

Anti-gH2AX Cell Signaling Technology Cat# 9718; RRID: AB_2118009

Anti-53BP1 Novus Cat# NB100-305; RRID: AB_10001695

Anti-PICH Millipore Cat# 04-1540; RRID: AB_10616795

Anti-BLM Santa Cruz Cat# sc-7790; RRID: AB_2243489

Anti-centromeric antibody Antibodies Inc. Cat# 15-234-0001

Anti-p53 Santa Cruz Cat# sc-126; RRID: AB_628082

Anti-p21 Santa Cruz Cat# sc-6246; RRID: AB_628073

Anti-p16 BD Cat# 554079 RRID: AB_395229

Anti-Actin Sigma-Aldrich Cat# A2228; RRID: AB_476697

Anti-ULBP-2/5/6 PE-conjugated R&D System Cat# FAB1298P; RRID: AB_2214693

Anti-CD155/PVR PE-conjugated R&D System Cat# FAB25301P; RRID: AB_2269068

Anti-Nectin-2/CD112 PE-conjugated R&D System Cat# FAB2229P; RRID: AB_10890734

Anti-NKG2D/CD314 R&D System Cat# MAB139; RRID: AB_2133263

Anti-ULBP-1 PE-conjugated R&D System Cat# FAB1380P

Anti-MIC A/B PE-conjugated BD Cat# 558352; RRID: AB_397077

Anti-IgG2A PE-conjugated R&D System Cat# IC003P; RRID: AB_357245

Anti-IgG1 PE-conjugated R&D System Cat# IC002P; RRID: AB_357242

Chemicals, Peptides, and Recombinant Proteins

Fibronectin Sigma Aldrich F1141

Reversine Sigma Aldrich or Cayman

Chemical Company

R3904 (Sigma), 10004412 (Cayman)

AZ3146 Tocris 3994

Monastrol Santa Cruz sc-202710A

SB203580 Cell Signaling Technology 5633S

Nocodazole Sigma Aldrich M1404

Thymidine Sigma Aldrich T1895

Aphidicolin Sigma Aldrich A0781

RO-3306 Sigma Aldrich SML0569

Chk2 inhibitor II hydrate Sigma Aldrich C3742

VE821 Cayman Chemical Company 17587

NMS-P715 EMD/Millipore 475949

Lipofectamine RNAiMAX Life Technologies 13778

Critical Commercial Assays

Click-iT EdU Alexa Fluor 647 or Alexa Fluor 488 Imaging Kit Invitrogen C10340, C10337

GenomePlex Single Cell Whole Genome Amplification Kit Sigma Aldrich WGA4

PathScan Inflammation Multi-Target Sandwich ELISA Kit Cell Signaling Technology 7276

Senescence b-Galactosidase Staining Kit Cell Signaling Technology 9860

Mouse cytokine array kit R&D Systems ARY006

Human cytokine array kit R&D Systems ARY005B

Deposited Data

RNA-seq This paper https://www.ncbi.nlm.nih.gov/geo/;

Accession number GEO: GSE83647

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

NK92-MI ATCC CRL-2408

RPE-1 hTERT Gift of Iain Cheeseman (MIT) NA

Bub1bH/H MEFs (Baker et al., 2004) NA

Oligonucleotides

Mad2 siRNA Life Technologies 4392420/s8391

Negative Control siRNA Life Technologies 4390846

Software and Algorithms

GraphPad Prism N/A http://www.graphpad.com

MATLAB N/A https://www.mathworks.com/

products/matlab.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Angelika

Amon (angelika@mit.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

RPE-1 hTERT cell lines andMEFs were cultured in DMEM (Invitrogen) supplemented with 10% FBS, 2mML-glutamine and 100 U/ml

penicillin/streptomycin. Cells were grown at 37�C with 5% CO2 in a humidified environment.

To generate an RPE-1 hTERT cell line co-expressing GFP-PCNA and H2B-RFP, cells were transduced with pBABE-Puro, a vector

encoding human histone H2B C-terminally fused to mRFP1.3 (gift from Don Cleveland), and with an MGC collection human PCNA

cDNA engineered to harbor an N-terminal eGFP fusion and cloned into pBABE-Hygro. A population of cells expressing both trans-

genes at moderate levels was selected by fluorescence activated cell sorting (FACS). This cell population was then cultured in

DMEM/F12 (Invitrogen) supplemented with 10% FBS and 100U/ml penicillin/streptomycin and grown at 37�C with 5% CO2 in a

humidified environment.

NK92-MI cells were obtained from ATCC and cultured in Alpha Minimum Essential medium without ribonucleosides and deoxy-

ribonucleosides but with 2 mM L-glutamine and 1.5 g/L sodium bicarbonate, 0.2 mM inositol, 0.1 mM 2-mercaptoethanol,

0.02 mM folic acid, horse serum to a final concentration of 12.5%, fetal bovine serum to a final concentration of 12.5%.

METHOD DETAILS

Drug Treatments
Reversine was obtained from Cayman Chemical or Sigma-Aldrich and used at a working concentration of 0.5 mM or 2mM; Monastrol

(working concentration 100 mM) from Tocris; SB203580 (working concentration 10 mM) from CellSignalingTechnology; Thymidine

(working concentration 5 mM), Aphidicolin (working concentration 400 nM), RO-3306 (working concentration 7.5 mM), Chk2 inhibitor

II hydrate (working concentration 10 mM), VE821 (working concentration 1 mM) and Nocodazole (working concentration 330 nM) were

obtained from Sigma-Aldrich. NMS-P715 (working concentration 1 mM) was obtained from EMD/Millipore.

Isolation of Cells that Stopped Dividing Following Chromosome Mis-segregation
To enrich for cells that ceased to divide following chromosome mis-segregation, RPE-1 cells were synchronized at the G1/S phase

transition by thymidine treatment. Six hours after release from the G1/S phase block, cells were treated with vehicle or 0.5 mM rever-

sine for 12 hours. After wash-out of the drug, cells were placed into fresh medium and either harvested 66 hours later (euploid and

aneuploid cycling cells) or exposed to nocodazole. 12 hours later, mitotic cells were removed by shake-off and the remaining cells

were placed again into fresh medium containing nocodazole. Because the percentage of dividing cells was very low after the fourth

shake-off (see Figure 6B), we performed four nocodazole treatment/shake-offs in all experiments shown.

Cell Imaging Methods
For fluorescence imaging RPE-1 cells were plated at about 30% of confluence onto coverslips coated with 10 mg/ml Fibronectin

(Sigma-Aldrich). Cells were fixed with 4% paraformaldehyde (in PBS) for 15 minutes at room temperature, then treated with 4%

BSA-PBS and incubated with the appropriate antibodies diluted in BSA-PBS. The following antibodies were used for immunofluo-

rescence: anti gH2AX (Cell Signaling Technology #9718), anti 53BP1 (Novus #NB100-305), anti PICH (Millipore #04-1540), anti BLM

(Santa Cruz #sc-7790), anti-centromeric antibody (Antibodies Inc. #15-234-0001). Alexa 488- and Alexa 546-labeled secondary
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antibodies were from Invitrogen. DyLight649-conjugated secondary antibody was purchased from Jackson ImmunoResearch Lab-

oratories. DNA was stained with Hoechst. The coverslips were mounted using ProLong Gold Antifade reagent (Life Technologies).

EdU incorporation into DNA was visualized using the Click-iT EdU Alexa Fluor 647 or Alexa Fluor 488 Imaging Kit (Invitrogen)

following the manufacturer’s instructions. EdU-positive nuclei were scored by: (i) applying a global intensity threshold (manually

adjusted to detect nuclei by Hoechst staining and EdU-positive cells at an intensity value of about 1000); (2) applying the Separate

Touching Objects tool in Volocity; (3) excluding touching nuclei with a separation guide of 7 mm; and (4) rejecting nuclei with an area of

less than 30 mm2. The method was validated manually and found to give accurate cell counts.

Cells were imaged at 25�C on a Zeiss Axio Observer.Z1 inverted microscope (Zeiss. Thornwood, NY) with an ORCA-ER C4742-80

CCD camera (Hamamatsu Corporation. Middlesex, NJ) and an X-Cite Series 120 arc lamp (Life Sciences & Industrial Division.

Ontario, Canada) or on a DeltaVision Elite imaging system (Applied Precision) and microscope (model IX-71; Olympus) controlled

by SoftWoRx software (Applied Precision) and a 603 objective lens with a CoolSNAP HQ2 camera (Photometrics). Images were ac-

quired as z-sections at 0.3 mm (DeltaVision) and converted into maximal intensity projections using SoftWoRx (Applied Precision)

software. Deconvolution was performed using a constrained-iterative algorithm in SoftWoRx.

Quantification of fluorescence intensity as well as quantification of 53BP1 and gH2AX foci was conducted using Volocity (Perkin

Elmer) and Python 2.7. gH2AX-positive foci within a cell were determined by analyzing the number of objects within each cell

containing fluorescent accumulations of Hoechst and gH2AX greater than 0.2 mm2 as measured by Volocity. Foci were scored by:

(1) applying the Volocity ‘‘find spots’’ option; (2) filtering the population by applying a pixel intensity threshold of 1500; (3) using

the compartmentalize tool in Volocity to analyze only previously identified nuclei; and (4) applying a 0.2 mm2 size filter to remove

speckles and noise. This protocol was validated manually and found to reliably detect foci. Images were imported into Photoshop

CS5.1 (Adobe Systems, Inc.), and levels were adjusted.

For FISH analyses, RPE-1 cells were plated on 24x60mm coverslips, treated with DMSO or 1mM NMS-P715 for 24 hrs and then

fixed and stained with Hoechst and FISH probes (Cytocell Aquarius Satellite Enumeration probe LPE-011G, Cytocell Aquarius

Satellite Enumeration probe LPE-006R). Nuclei were imaged on a Deltavision microscope with a 40x objective and number of

foci/nucleus were counted.

Video Microscopy
Live cell imaging was performed either using an inverted microscope (IX70; Nikon) with a magnification objective of 10x or using a

Yokagawa CQ1 spinning disk confocal (40x objective, reversine-treated cells) or Yokogawa CV1000 (20x objective, monastrol-

treated cells). All microscopes were equipped with an incubation chamber maintained at 37�C in an atmosphere of 5% CO2. For

experiments with NK92 cells, euploid and aneuploid arrested cells were co-cultured in the presence of NK92 cells at a target:effector

ratio of 1:10 right before the beginning of filming.

For experiments described in Figure S1, unsynchronized RPE-1 hTERT GFP-PCNA H2B-RFP cells were plated on Greiner

SCREENSTAR 96-well plates (#655866), incubated overnight, and then treated with DMSO or 100 mM monastrol and immediately

filmed for 6 hrs using a Yokagawa CV1000 microscope with a 20x objective. After 6 hours plates were removed, cells were washed

twice with complete medium, and returned to the microscope for an additional 50 hrs of filming. Because cells were unsynchronized,

mother cells entered mitosis throughout monastrol treatment and thereby experienced variable mitotic delays. After drug washout,

the mother cells exited mitosis and the cell cycle progression of their daughter cells was tracked. Images were acquired every 10 min

for the first 8 hrs to capture mother cell mitotic timing and mis-segregation events, and then every 20 min to capture daughter cell

cycle progression.

To quantify daughter cell S phase timing after chromosomemis-segregation in themother cell, unsynchronized RPE1 hTERTGFP-

PCNA H2B-RFP cells were plated on Greiner SCREENSTAR 96-well plates (#655866), incubated overnight, and then treated with

DMSO, 0.5 mM, or 2 mM reversine. Cells were immediately filmed on a Yokagawa CQ1 with a 40x objective. Images were acquired

every 5 minutes for 5 hrs and then every 20 min for a total of 48 hrs. Reversine was not washed out for the duration of the experiment.

Because cells were unsynchronized, we determined the time from PCNA focus appearance to disappearance for two types of cells.

The first type (G1) were cells that progressed throughmitosis before drug treatment and hence were exposed to reversine only during

G1 and S phase. The second type (G2) were the daughters of mother cells that progressed through mitosis in the presence of rever-

sine and had mis-segregated their chromosomes.

To track daughter cell cycle fate after mother cells had mis-segregated chromosomes, RPE-1 hTERT GFP-PCNA H2B-RFP cells

were plated on 96-well cycloolifin plates overnight, treated with DMSO or 1 mM NMS-P715 and immediately filmed on a Yokagawa

CV1000microscope using a 20x objective. Images were acquired every 10min for 8 hrs to capture mother cell mitosis and then every

15 min for 2 days to track daughter cell fate.

Protein Detection by Western Blots
For protein analyses cells were lysed in lysis buffer (50 mM Tris-HCl, pH8.0, 150 mM NaCl, 0.5 % Sodium deoxycholate, 0.1% SDS,

1%NP-40, protease inhibitor cocktail (Roche) and phosphatase inhibitor cocktail (Roche)) and resolved on 15%SDSPAGE gels. The

following primary antibodies were used: anti-actin (Sigma-Aldrich #A2228, 1:10,000), anti-p53 (Santa Cruz #sc-126, 1:200), anti-p21

(Santa Cruz #sc-6246, 1:200), anti-p16 (BD #554079, 1:200), anti gH2AX (Cell Signaling Technology #9718, 1:500), anti-GAPDH

(Santa Cruz #sc-365062).
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RNAseq Data Processing and Analysis
RNAseq analyses were conducted on euploid, and aneuploid cells that proliferate or that had ceased to divide. Total RNA was iso-

lated using the RNeasy Mini Kit (QIAGEN). Quality control of single end reads was performed by aligning reads to the human genome

(hg19) with tophat 2.0.9. Alignment rates to various genomic features were counted and summarized using bedtools 2.17.0 and a

series of custom scripts. The QC results are all within acceptable ranges.

To quantify gene expression, RNAseq data were aligned and summarized using bowtie version 1.0.1, rsem version 1.2.15,

samtools/0.1.19 and a UCSC known genes annotation file from the hg19 assembly. Differential expression analysis was performed

with R version 3.2.2 and DESeq_1.20.0. Raw data for the trisomic MEF experiment (GSE12501) and senescence experiment

(GSE11954) were downloaded from GEO and reprocessed using R version 3.2.2 with bioconductor packages affy_1.48.0,

affyPLM_1.46.0 and gcRMA_2.42.0. For the senescence experiment, markers of growth and senescence were identified by differ-

ential expression analysis using limma_3.26.3 with statistical cut-offs of log2 fold change > 1 and adjusted p-value < 0.05.

Gene Set Enrichment Analysis was run with Java application version 2.2.2 obtained from the Broad Institute and custom gene sets

(sting_sasp.gmx, grVsen_degs.gmx) or canonical pathway gene sets (c2cp) available at MsigDB (http://software.broadinstitute.org/

gsea/msigdb/index.jsp). Geneswith low average expression and variance across all samples (expression < 0.5, variance < 0.02) were

excluded from the GCT file.

A group of histone genes shows some degree of differential expression in our experiment and these genes are found in many

different c2cp gene sets such as REACTOME_RNA_POL_I_TRANSCRIPTION and REACTOME_MEIOTIC_RECOMBINATION.

These gene sets show enrichment in our arrested cells with complex karyotypes. Because our experiment depends on polyA tail

purification of mRNAs for sequencing and given the controversy surrounding the polyA status of histone mRNAs, we have excluded

the gene sets dominated by histone genes from our GSEA summary in order to highlight other biological processes.

DNA Combing
RPE-1 cells were treated with 0.5 mM reversine or vehicle control for 24 hours. The cells were then washed and arrested in late G1 by

treatment with Mimosine for 24 hours. Mimosine was removed and cells were placed into fresh medium. Three hours later cells were

pulsed at 37�C with 25 mM IdU for 60minutes and chased with 200 mM CldU for 60 minutes. After labeling, cells were harvested and

washed twice with PBS. Cells were re-suspended in 50 ml of PBS to a final concentration of 0.5x106 cells/ml. Cells were incubated at

42�C for 2-3minutes andmixedwith equal volume of 1.5% lowmelting agarose (made in PBS and pre-warmed to 42�C) and cast into

plug molds and allowed to set at 4�C for half an hour. The plugs were digested with Proteinase K for a total of 60 hours at 50�C with

solution changes every 12 hours. The plugs were washed with TE and the combed fibers were stained as previously described (Iyer

and Rhind, 2016). Fibers were visualized using a Zeiss Axioskop 2 Plus epifluorescence microscope with a 100x Plan-NEOFLUAR oil

objective and imaged using a SPOTmonochrome cooled-CCD camera. Fibers were measured using ImageJ. Pixels were converted

to kb using l DNA as a standard. Analysis of the data was automated using custom-made MATLAB scripts.

For fork stall rate estimation, two unidirectional forks moving in the same direction on a fiber (green-red-unlabeled-green-red or

red-green-unlabeled-red-green) were inferred to contain a stalled fork in between them. Specifically, stalled forks were recognized

by red-unlabeled-green (RUG) or green-unlabeled-red (GUR) patterns. The frequency of such patterns in the dataset was used to

identify the apparent stall rate. In addition, two forks moving away from each other on a fiber (a RGUGR pattern) can be interpreted

as forks elongating from a single origin in the middle or two origins whose forks on the inner side have both stalled. To estimate the

stall rate across the entire dataset, the probability of forks stalling was estimated from the unambiguous stall events and extrapolated

to ambiguous events to determine the net stall rate (Iyer and Rhind, 2017).

Karyotype Analysis
Karyotype determination by single cell sequencing was performed as previously described (Knouse et al., 2014). Briefly, single cells

were isolated by microaspiration, and genomic DNA was amplified using the GenomePlex Single Cell Whole Genome Amplification

Kit (Sigma). Amplified DNA was purified, barcoded, pooled, and sequenced on an Illumina HiSeq2000. Sequencing reads were

aligned using BWA (0.6.1). HMMcopy (0.1.1) was used to estimate gene copy number in 500-kb bins. Cells with high variability in

copy number across bins were excluded from the analysis.

Karyotype analysis by G-banding was performed by Cell Line Genetics (Madison, WI).

Cytokine Measurement
Euploid and arrested cells with complex karyotypes were isolated and placed into fresh medium for 36 hours. Then, medium was

harvested and cell number determined using a Cellometer AutoT4 (Nexcelom). Levels of secreted cytokines were determined using

the human cytokine array kit (R&D Systems) following the manufacturer’s instructions and normalized to total number of cells.

ELISA Measurement
Euploid and arrested cells with complex karyotypes were isolated and the levels of NF-kB p65, phospho- NF-kB p65 (Ser536), phos-

pho-SAPK/JNK (Thr183/Tyr185), phospho-p38 MAPK (Thr180/Tyr182), phospho-Stat3 (Tyr705) and phospho-IkB-a (Ser32) were

measured by a solid phase sandwich enzyme-linked immunosorbent assay (PathScan Inflammation Multi-Target Sandwich ELISA

Kit, Cell Signaling Technology) following the manufacturer’s instructions.
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FACS
Euploid and arrested cells with complex karyotypes were generated as described above and the levels of MICA/B, CD155/PVR,

CD112, ULBP1 and ULBP2 were measured by flow cytometry and analyzed using FlowJo software. Forward (FSC-A) scatter was

used to determine the cell size distribution of the cell population.

NK-Mediated Cell Death Assay
51Chromium release assays are traditionally used to determine the cytotoxicity of immune cells (Brunner et al., 1968). Because of

concerns over spillage during the repeated nocodazole shake-offs necessary to generate aneuploid arrested cell populations, we

did not use this assay. Instead we followed cell killing by life-cell microscopy. In this assay, euploid and aneuploid arrested cells

were generated as described above and plated into a 12 well plate at 104 cells/well. 12 hours later, cells were placed in NK92 growth

medium for 24 hours and then co-cultured in the presence of NK92 cells at a target:effector ratio of 1:10 for 24 hours. For antibody-

blocking experiments, NK92 cells were pre-incubated with 20 mg/ml anti-NKG2D antibody (R&D systems) for three hours. Dead cells,

together with NK92 cells, were gently removed. Adherent cells were counted using a Cellometer AutoT4 (Nexcelom) and normalized

to cells grown under the same condition but in the absence of NK92 cells.

We note that the kinetics of NK92 cell mediated killing of aneuploid arrested cells is slower than what is usually seen with the
51Chromium release assay (Brunner et al., 1968). This difference could be biological, that is NK92 cells take longer to become acti-

vated by aneuploid arrested cells than by other target cells. We favor the idea that differences in assay sensitivity are responsible for

the slow NK92 cell response that we observe. To detect release of 51Chromium from cells membrane perforation has to occur. In

contrast, life cell imaging based assessment of cell death requires the complete lysis of cells, which is likely to take longer than mem-

brane perforation.

RNAi
For RNAi experiments, RPE-1 cells were plated at about 25-30% of confluence 12 hours before transfection. Negative control siRNA

(with sequence that do not target any gene product) or oligos targeting Mad2 were purchased from Life Technologies (catalogue

number 4390846 and 4392420/s8391, respectively) and transfected with Lipofectamine RNAiMAX (Life Technologies) at final con-

centration of 10 nM following the manufacturer’s instruction.

b-Galactosidase Staining
Euploid and arrested cells with complex karyotypes were plated into a 6 well plate at 106 cells/well, allowed to attach overnight, and

then stained using the Senescence b-Galactosidase Staining Kit (Cell Signaling Technology) following the manufacturer’s

instructions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using GraphPad Prism software. Details of the statistical tests employed are reported in figure

legends. Error bars represent SEM unless otherwise indicated. All experiments were performed in two or more replicates and at least

50 cells/condition/replicate were analyzed.

DATA AND SOFTWARE AVAILABILITY

The RNA-seq data sets generated for this study can be accessed at Gene Expression Omnibus (GEO) database with the accession

number GEO: GSE83647.
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